Asian Climate-SDG Technology Innovation HackathOn for Next-generation (ACTION): Safeguarding Human Health in the Climate Crisis

Thrivability by Design: Advancing Human Health and Climate Solutions through Sustainability Science

By:

Associate Professor Dr. Zeeda Fatimah Mohamad

Serving the Nation. Impacting the World.

Figure 1. Impact of climate change on human health framework.

Source: Centers of Disease Control and Prevention, Climate Effects on Health, Published 3 March 2021.

Viewing the challenge from the lens of

sustainability science

"Sustainability science is a field of research dealing with the interactions between natural and social systems, and with how those interactions affect the challenge of sustainability: meeting the needs of present and future generations while substantially reducing poverty and conserving the planet's life-support systems "Kates, et al. (2001)

A transdisciplinary, solution-oriented approach to sustainability challenges

- Systems-oriented: Think in systems seeing connections between causes, impacts, and feedback loops
- ❖ Interdisciplinarity: Involve different disciplines bridging natura science, engineering, public health, social science, humanities etc.
- Collaborative: Working together involving communities, governments, businesses, universities etc.
- Context-sensitive: Adapt to local context tailored to the local environment and culture
- Justice-oriented: Ensuring solutions are fair include the most marginalized and vulnerable

Challenge 1: Ecosystem Degradation and Climate-Linked Health Risks

General Issue:

Loss of forests, wetlands, and biodiversity increases vulnerability to heat, flooding, poor air/water quality, and food insecurity

Health Impact:

Heat-related illnesses
Waterborne and vector-borne diseases
Mental health decline due to loss of green space
Reduced nutrition from degraded ecosystems

Low-tech

Hi-tech

Restore or protect ecosystems using traditional, local, or natural methods

Mangrove restoration | Agroforestry | Green belts | Wetland rehabilitation

Monitor, predict, and manage ecosystem-health interactions using digital and analytical technologies Satellite-based ecosystem risk mapping | Al disease prediction models | Smart sensors

Challenge 2: Infrastructure Inadequate for Climate Resilience

General Issue:

Physical infrastructure is outdated or unsuitable for withstanding climate extremes

Health Impact:

Heatstroke and respiratory illness
Injury and disease outbreaks during floods, droughts, or storms
Inaccessible health services during emergencies

LOW-TECH

Use simple, context-specific designs that improve resilience using natural ventilation, elevation, or traditional materials

Cooling shelters with shaded roofs or natural ventilation-I Raised walkways in flood zone | Gravity-fed water systems |Rainwater harvesting tanks

HI-TECH

Use technology, data, and engineering innovations to build smart, responsive infrastructure

IoT-based flood sensors and alerts | Solar-powered, off-grid clinics with battery backup | AI energy management in hospital | Digital twins for climate-risk planning

Challenge 3: Inaccessible or Fragmented Climate-Health Data

General Issue:

Communities lack timely, localized data to respond to climate and health risks

Health Impact:

Delayed outbreak response

Disaster mismanagement

Public confusion and anxiety due to misinformation

LOW-TECH ←

Use simple, locally appropriate tools to collect, share, and act on climate-health information, often through community participation

Community notice boards for weather and health alerts | Radio broadcasts in local languages | Citizen science on mosquito breeding, water levels, or air quality

Use real-time data, digital platforms, and predictive tools to deliver targeted information and alerts

Al-based disease forecasting models | Mobile apps with personalised alerts or risk maps | IoT sensors tracking air pollution, temperature, or water safety | GIS dashboards for planners and emergency services

Whether high-tech or low-tech, the best solutions are built with humility, collaboration, and care. Innovation doesn't need to be flashy - just thoughtful, inclusive, and lasting.

TERIMA KASIH Xièxiè Thank you

Acknowledgements:

- Professor Shireen Anne Nah, Department of Surgery, Faculty of Medicine, UM
- Dr. Fong Chng Saun, Institute of Advanced Studies, UM

^{*} Some content was brainstormed and polished with the help from ChatGPT