Frontier of Earth System Science Seminar No.1 Fall 2013

Remote sensing of the terrestrial ecosystem for climate change studies

Jun Yang Center for Earth System Science Tsinghua University

Outline

1 Introduction

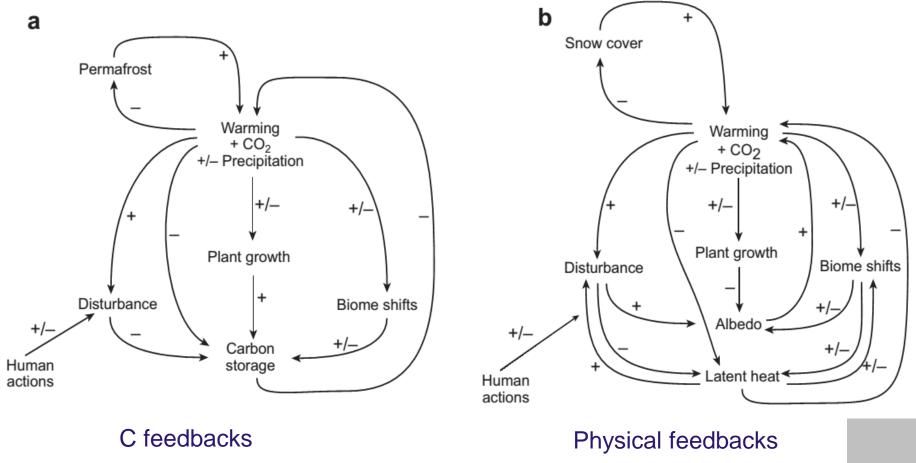
2 Observation of the terrestrial ecosystem

3 Integration with climate models

4 Limitations

5 Prospects

1 INTRODUCTION


1 Introduction

Terrestrial ecosystem-Impacts

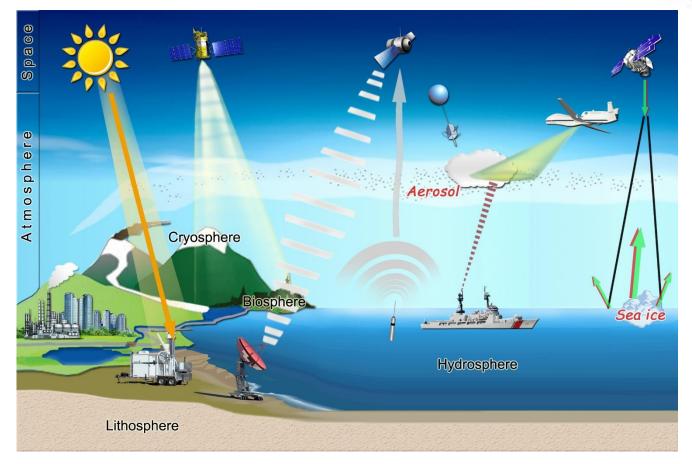
- Species
- Biomes
- Phenology
- Disturbances
- Global biogeochemistry

Terrestrial ecosystem-Feedbacks

(Field et al., Annu. Rev. Environ. Resour. 2007)

CENTER FOR EARTH SYSTEM SCIENCE 清华大学地球系统科学研究中心

1 Introduction


Why remote sensing?

Global coverage and high frequency You have no other options

1 Introduction

Climate observation

(Source: Yang et al. 2013)

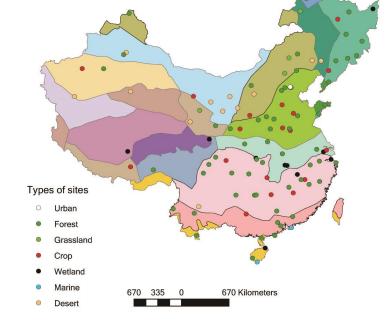
-the foundation of our understanding of the climate system (*Overpeck*, 2011, *Science*)

Global coverage and frequency Essential climate variables (ECVs)

Domain	Essential Climate Variables
Atmospheric (over land, sea and ice)	Surface wind speed and direction; precipitation; upper-air temperature; upper-air wind speed and direction; water vapour; cloud properties; Earth radiation budget (including solar irradiance); carbon dioxide; methane and other long-lived greenhouse gases; and ozone and aerosol properties, supported by their precursors.
Oceanic	Sea-surface temperature; sea-surface salinity; sea level; sea state; sea ice; ocean colour.
Terrestrial	Lakes; snow cover; glaciers and ice caps;, ice sheets; albedo; land cover (including vegetation type); fraction of Absorbed Photosynthetically Active Radiation (FAPAR); Leaf Area Index (LAI); above-ground biomass; fire disturbance; soil moisture.

(GCOS, 2010)

Table 4: Overview of Products – Terrestrial


ECVs / Global Products requiring Satellite Observations	Fundamental Climate Data Records required for Product Generation (from past, current and future missions)	
Lakes For lakes in the Global Terrestrial Network for Lakes: Maps of lakes; Lake levels; Surface temperatures of lakes	VIS/NIR imagery, and radar imagery; Altimetry; High-resolution IR imagery	
Glaciers and Ice Caps Maps of the areas covered by glaciers other than ice sheets; Ice-sheet elevation changes for mass-balance determination	High-resolution VIS/NIR/SWIR optical imagery; Altimetry	
Snow Cover Snow areal extent	Moderate-resolution VIS/NIR/IR and passive microwave imagery	
Albedo Directional-hemispherical (black sky) albedo	Multispectral and broadband imagery	
Land Cover Moderate-resolution maps of land-cover type; High-resolution maps of land-cover type, for the detection of land- cover change	Moderate-resolution multispectral VIS/NIR imagery; High-resolution multispectral VIS/NIR imagery	
fAPAR Maps of fAPAR	VIS/NIR imagery	
LAI Maps of LAI	VIS/NIR imagery	
Biomass Research towards global, above-ground forest biomass and forest-biomass change	L band / P band SAR; Laser altimetry	
Fire Disturbance Burnt area, supplemented by active-fire maps and fire-radiated power	VIS/NIR/SWIR/TIR moderate-resolution multispectral imagery	
Soil Moisture ⁴ Research towards global near-surface soil-moisture map (up to 10cm soil depth)	Active and passive microwave	

You have no other options!!!

1 Introduction

Networks CNERN . CERN CTERN 0 Other . **Climatic zones** Humid Mid-subtropical Zone Plateau Sub-humid Subrigid Zone Humid South Subtropical Zone Plateau Semi-arid Subrigid Zone Sub-humid Mid-temperate Zone Humid Cold Temperate Zone Semi-arid Mid-temperate Zone Sub-humid Warm Temperate Zone Plateau Arid Rigid Zone Arid Mid-temperate Zone Arid Warm Temperate Zone Plateau Semi-arid Temperate Zone Humid Mid-temperate Zone Humid Warm Temperate Zone Plateau Sub-humid and Humid Temperate Zone Plateau Arid Temperate Zone Humid North Subtropical Zone Humid Tropcial Zone

Ecological monitoring stations in China

2 Observation of the terrestrial ecosystem

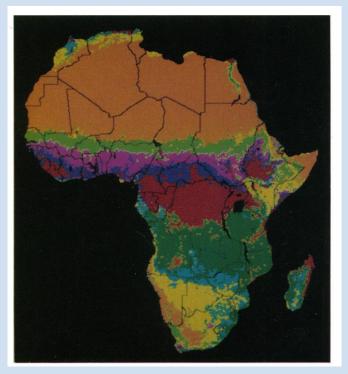
Land use/land cover change

- Impacts of the climate change
 - Snow and ice cover melt
 - Land degradation
- Feedbacks to climate
 - Surface albedo
 - Surface fluxes of mass and energy
 - $-CO_2$
 - Water vapor
 - Aerosols
 - Momentum

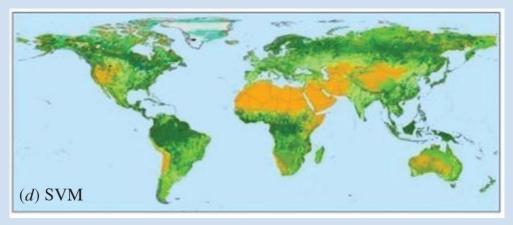
Land use/land cover change Remote sensing methodology

Method	Data	Samples	Time	Resolution
Classification Visual ISODATA MLC SVM	AVHRR	GLCC2.0	1992	1km
	ENVISAT	GlobCover	2006,2009	300m
	MODIS	MCD12Q1	Yearly	500m
	Landsat	FROM-GLC	2000,2010	30m,250m

The most *efficient* approaches to monitor land cover and its changes in time over a variety of spatial scales.

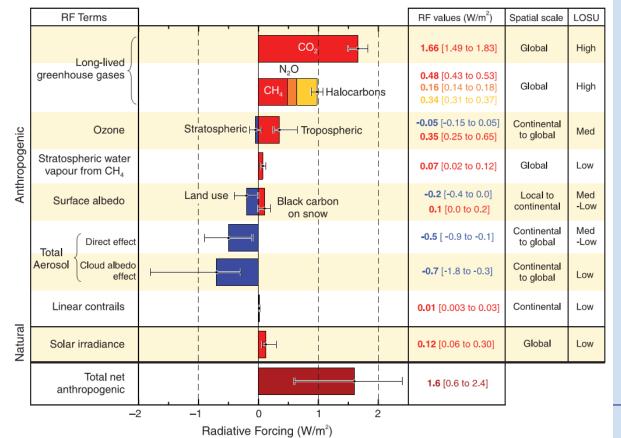

(Bontemps et al., 2011, Biogeosciences Discuss)

2 Observation of the terrestrial ecosystem


Land use/Land cover change

(Tucker et al., 1985, Science)

(GlobCover, 2009, ESA)

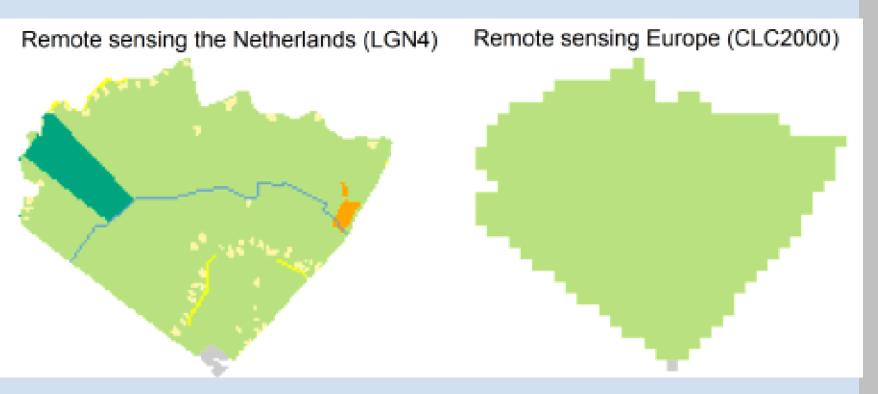


(FROM-GLC, 2010, Gong et al., 2012)

Land use/land cover change Major discoveries

Radiative forcing components

(IPCC AR4, 2007)

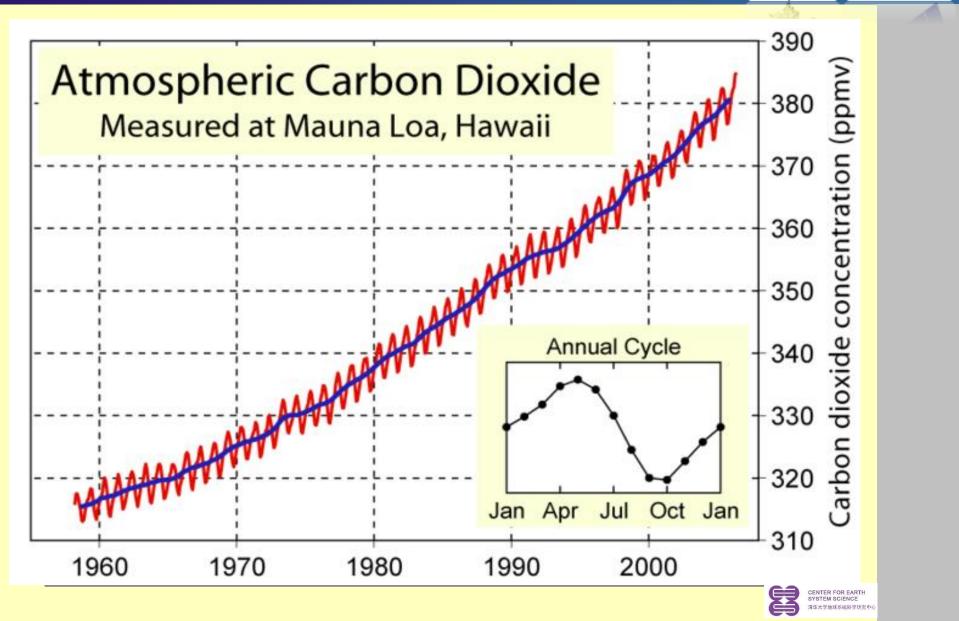

Land use/land cover change

- Existing problems
 - Data inventory and <u>aggregation methods</u>
 - Disagreements in heterogeneous landscapes or transition zones
 - Accuracy <70%
 - Hard to differentiating the stable and the dynamic components of the land cover

Land use/land cover change Existing problems

Verburg, 2011, Global Change Biology

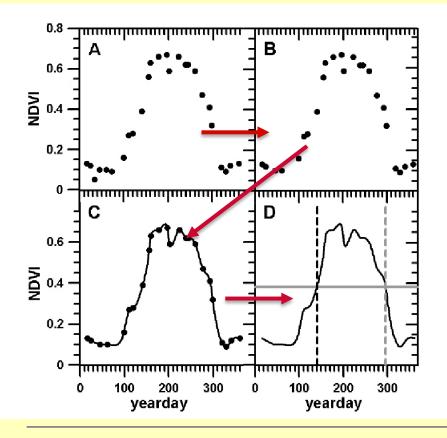
2 Observation of the terrestrial ecosystem


Land use/land cover change

- Future research
 - Data integration
 - Improve validation techniques
 - Harmonization of classification systems
 - Select data to fit the specific applications
 - Incorporate uncertainties in land cover into future assessments
 - Answer the question of global-scale teleconnections

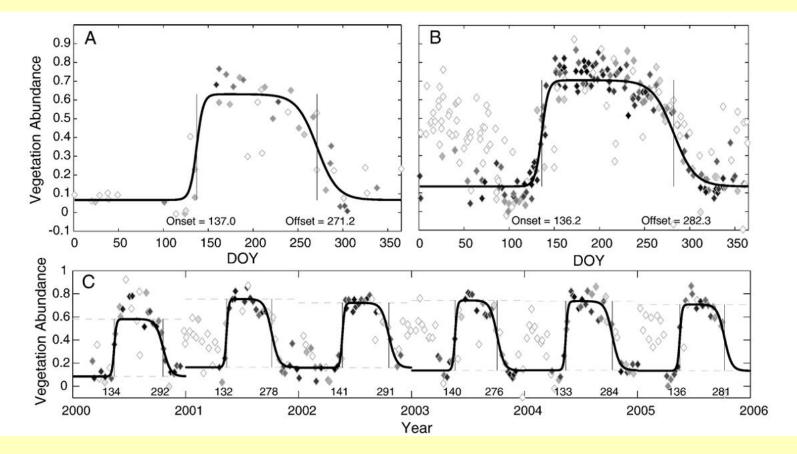
Pielke et al., 2011, WIRES Clim Change

2 Observation of the terrestrial ecosystem


Phenological shifts

- Remote sensing methodology
 - AVHRR and MODIS data, also Landsat
 - Start of season (SOS) method
 - Find time breaks on Normalized difference vegetation index(NDVI) or Enhanced vegetation index(EVI) curves: first upturn and midpoint
 - Representing the vegetation indices(VI) curves: actual data and curve fitting

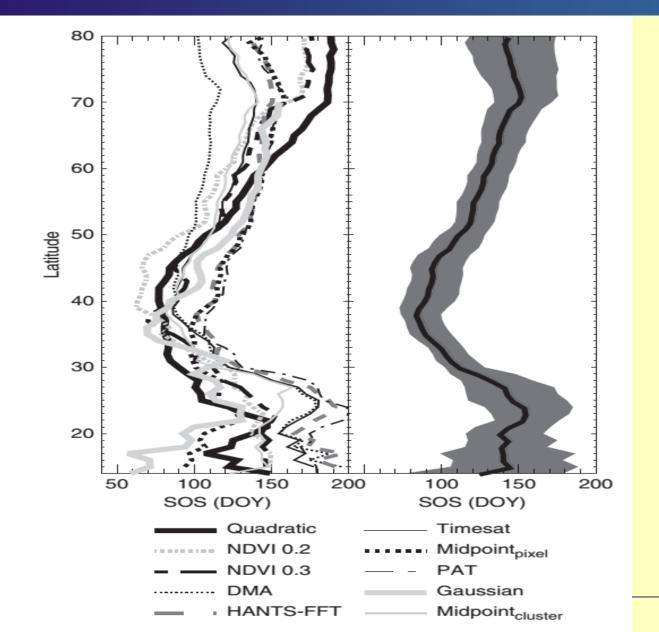
Phenological shifts Remote sensing methodology



Seasonal midpoint NDVI (SMN) (White et al., 2001 Ecosystems)

Phenological shifts

Curve fitting method (Fisher and Mustard, 2007, RSE)


Phenological shifts

- Major discoveries
 - Wall-to-wall coverage of global vegetation since 1982
 - Shift towards earlier spring greening in many region

2 Observation of the terrestrial ecosystem

Phenological shifts

- Existing problems
 - Possible reasons:
 - Lost of fine-grain distinction
 - Difference in retrieval methods
 - Implementation procedure

Phenological shifts

- Future research
 - Intercomparison study
 - Validation with ground measurements
 - Complement the VIR/IR data using microwave data

- The productivities of the global ecosystem
 GPP, NPP, NEP
- Impact: variations of productivities
- Feedbacks: global C cycle

Remote sensing methodology

$$GPP = \varepsilon \times FPAR \times PAR \approx \varepsilon \times NDVI \times PAR$$

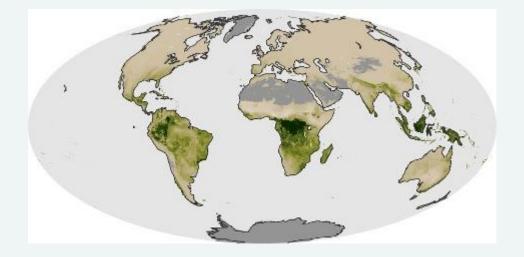
$$NPP = \sum (PSN_{net}) - R_g - R_m$$

$$PSN_{net} = GPP - R_{lr}$$

FPAR, Fraction of photosynthetically active radiation	PAR, radiation in photosynthetic wavelengths		
PSN _{net} , daily net photosynthesis	R_g , annual growth respiration		
R_{lr} , daily maintenance respiration of leaves and the fine roots	R_m , maintenance respiration of live cells in woody tissues		
ε, conversion efficiency or light use efficiency; normally annual plant, 2aC/MJ, woody, 0.2-1.5 aC/MJ			

(Running et al., 2004, Bioscience)

Remote sensing methodology


Model	Remote sensing based parameters
CASA	Vegetation Distribution, fPAR
GLO-PEM	<i>fPAR</i> , Solar radiation, Temperature, Vapour Pressure Deficit, Soil water
TURC	Vegetation Distribution, fPAR
SDBM	fPAR
VPM	Vegetation Distribution, fPAR
Table 1. R	emote sensing based parameters in PEMs

(Liu et al., 2010, IGRASS)

Major discoveries

- Major discoveries
 - Overall increase of global NPP
 - NPP/GPP ratio varied with climate and geography
 - Total terrestrial NPP
 - 56.4±7.9 Pg C yr⁻¹ averaged from 46 RS studies
 - 56.2±14.3 Pg C yr⁻¹ averaged from 251 inventory and model studies

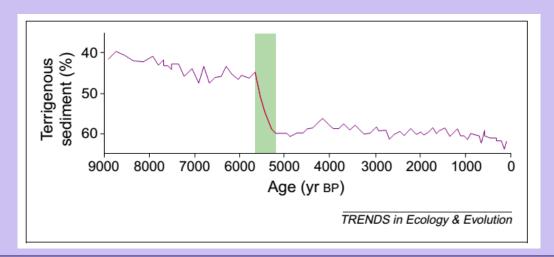
- Existing problems
 - Overestimation at low-productivity sites and underestimation at high-productivity sites
 - Low quality of meteorological inputs (PAR, Temperature, Vapor pressure deficit)
 - Assumption of a constant light use efficiency is not true
 - Inadequate environmental constrains (VPD, soil water, nutrient availability)

- Future research
 - Use photochemical reflectance index (PRI) as a surrogate of light use efficiency
 - More realistic representation of environmental constraints
 - Better estimation of respiration components

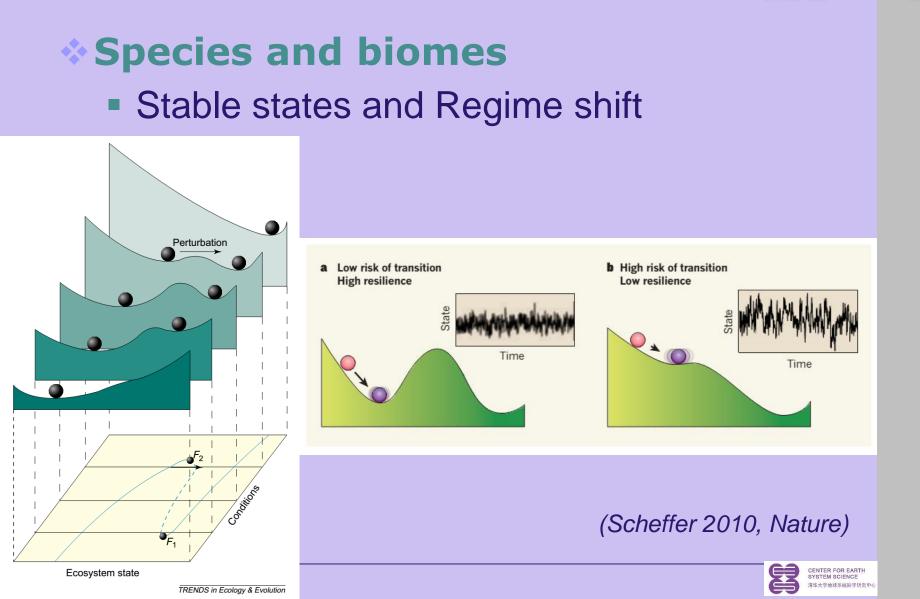
Species and biomes

- Impacts
 - Ecology
 - Evolution

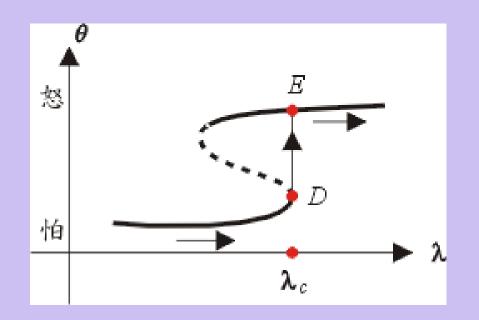
Species and biomes


- Remote sensing methodology
 - Biophysical characteristics of habitats
 - Spatial variability in species richness
 - Natural and anthropogenic changes

Species and biomes


- Regime shift
 - Aptly sudden shifts in ecosystems
 - E.g.
 - The formation of Sahara desert
 - Shift in Caribbean coral reefs

Scheffer and Carpenter, 2003, TREE)



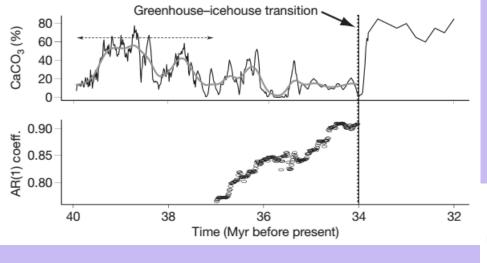
Species and biomes Regime shift

(Lin Songshan 2013)

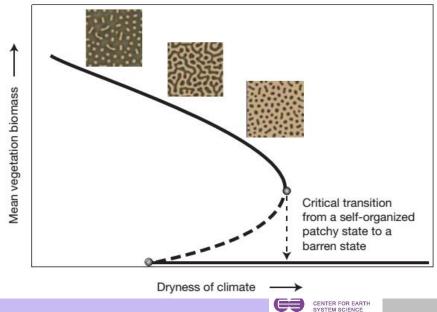
Species and biomes Regime shift

Early warming indicators

Phenomenon	Method	Signal	References
Critical slowing down	Autocorrelation; Return time	t	Carpenter et al. 2011
Increased variability	Variance; σ	t	Drake and Griffen 2010
Skewed responses	Skewness	1	Biggs et al., 2009
More extremes	Kurtosis	1	Biggs et al. 2009
Spatial pattern	Qualitative change	regular	Bailey 2011



2 Observation of the terrestrial ecosystem



青华大学地球系统科学研究中心

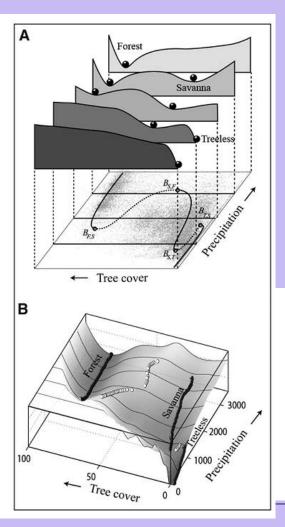
Self-organized spatial pattern

(Scheffer et al., 2009, Nature)

Critical slowing down

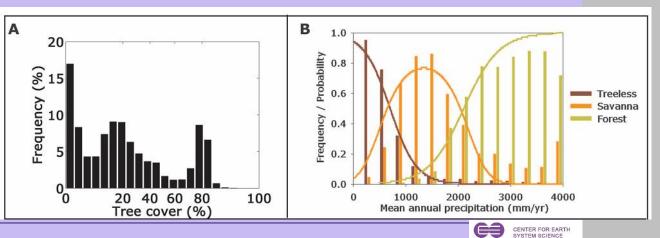
Regime shifts

- Remote sensing approach
 - Prove the existence of early warning signals
 - Prove the existence of the "tipping point"
 - Prove the existence of alternative states



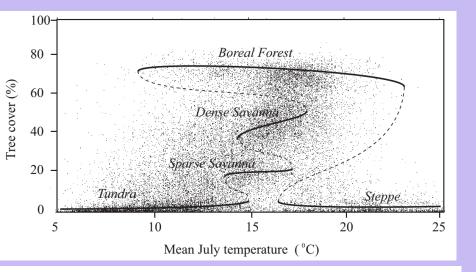
2. Observation of the terrestrial ecosystem

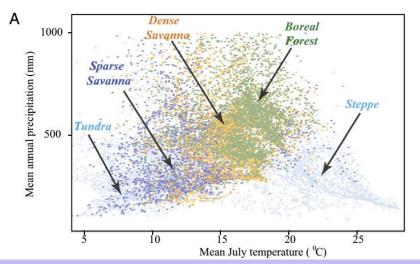
清华大学地球系统科学研究中心


Regime shifts

Transition between tropical forest and Savana

- 1. Tropical forest and savanna represent alternative stable states
- 2. Threshold 5%, 60% tree cover
- 3. Driven by precipitation


(Hirota et al., 2011, Science)



2 Observation of the terrestrial ecosystem

Regime shifts

Thresholds for boreal biome transitions

- 1. Three states, treeless, savanna, and boreal forests
- 2. Thresholds: 20%, 40%, 75%
- 3. Driven by temperature and precipitation

(Scheffer et al., 2012, PNAS)

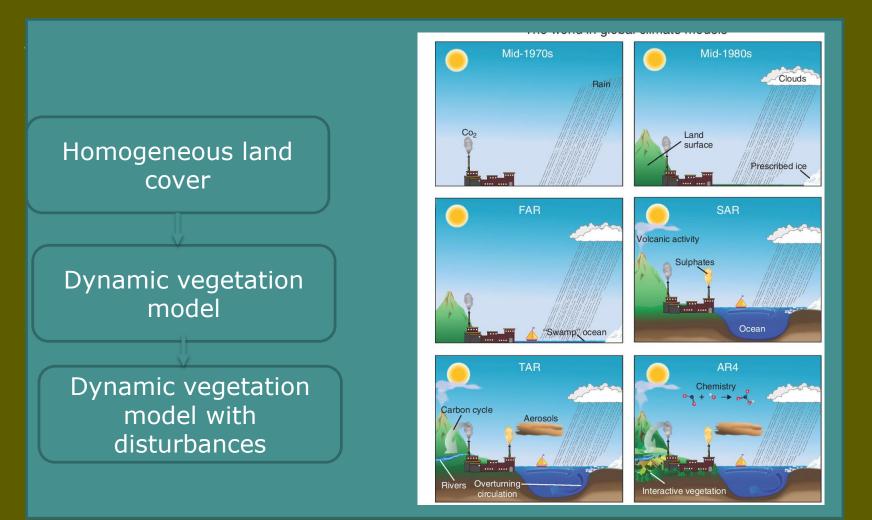
Regime shifts

- Remote sensing approach
 - 1. Get MODIS tree canopy cover data (MOD44B)
 - 2. Extract a random samples of pixels
 - 3. Analysis of multimodality of the tree cover frequency distribution using latent class analysis
 - 4. Build the correlation with precipitation and/or temprature

Regime shifts

- Future research
 - Find the mechanisms that drive the changes
 - Identify the character and timing of the transition
 - Answer the question: whether the vegetationclimate system has alternative stable states?

3 Integration with climate models


Input of climate models

- Provide boundary conditions
- Reinitialize models
- Update the state variables
- Provide constrains

3 Integration with climate models

Improve climate models

- Improve the accuracy of model predictions
 - Data assimilation: adjustment of the model state at observation times with measurements of a predictable uncertainties
 - Statistical linear estimation and ensemble assimilation

E.g., Land surface models+operational data assimilation schemes→ lowered RMSE (27.4-32.2%) (Ghent et al., 2010, JGR-Atmosphere)

Validate/calibrate climate models Compared to the GCM's outputs directly Combine with in situ measurements

Problems

- Spatio-temporal mismatching
- Lack of interfaces in climate models
- Changing mix of observations over time

4 Limitations

Short data spans of satellite data Biases associated with instrument Uncertainties in retrieval algorithms

Short data spans of satellite data

Time length of available observations

Time length (year)	Terrestrial ECV
0~9	Biomass, Glacier and ice caps
10~19	Land cover, Albedo, fAPAR, Fire disturbance
20~29	Lakes, LAI
30~39	Soil moisture
40~49	Snow cover

Yang et al. 2013, Nature Climate Change

Biases associated with instrument

- Inadequate spatial resolution and temporal frequency
- Poor calibrations
- Merging data from different systems

Oncertainties in retrieval algorithms

- Radiative transfer models
- Uncertainties in common inputs

5 Prospects

5 Prospects

***Improvements in**

- Future works
 - Intercomparison of data sets
 - Innovative use of existing data
 - Rigorous reanalysis
- Future systems
 - Dedicated satellite missions
 - Combine passive and active remote sensing
 - High-quality validation networks

