
Chapter 17
Applications of Terrestrial Remote Sensing
to Climate Modeling

Robert E. Dickinson

Abstract Terrestrial processes are an important component of climate. Climate can
be viewed as a nonlinear dynamical system which generates statistics to be com-
pared with observational statistics. The surface is forced by net radiation balanced
by sensible and latent fluxes, and by precipitation balanced by evapotranspiration,
soil moisture storage, and runoff. These balances depend on detailed geographic de-
scriptions of parameters required by the modeling. These details are constrained by
satellite remote sensing (as demonstrated by various recent studies) with consequent
substantial improvement in climate models. Some of these parameters, especially
those involving vegetation, may be evolved with the climate system.

When climate models characterize their radiative processes consistent with the
remote sensing algorithms useful for their detection, they become physically more
realistic and provide a suitable modeling framework for forward modeling data as-
similation. In particular, the 3D nature of canopy radiation needs to be represented
in climate models and how this connects trees and bushes to various underlying
surfaces.

17.1 Introduction to the Formulation of Climate Models

Climate dynamical models solve various conservation equations that describe how
the climate system evolves in time, and consequently generate numerical data for its
statistical characterization. These climate statistics may include, e.g., monthly mean
temperature and humidity of near surface air, temperature of leaves and profiles of
soil temperature and water content. Additional important statistics involve diurnal
variations, annual cycles and year to year variability of such quantities. The terres-
trial component of climate consists of various state variables related to the terms
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just mentioned, linked together by process descriptions, and constrained by appro-
priate observational information. Statistics of the process descriptions are also often
examined as part of the study of the climatology of a model.

Exactly what state variables, process descriptions, and constraining observations
should be used is determined by the multiple purposes for which the terrestrial sys-
tem is included in a climate model (e.g., for their contributions to weather prediction,
inter-annual climate prediction, projection of long term change from greenhouse
gases, study of hydrology and water resources, crop production, ecology of various
natural systems, biogeochemical cycling, especially that of carbon, as an ancillary
source of information for remote sensing studies, or for forward modeling of remote
sensing radiances).

The primary role of the terrestrial system as an interactive component of a cli-
mate model is to determine the near surface and surface variables that are used to
characterize climate observationally and to control the dynamic and thermodynamic
structure of the atmosphere as mentioned above. Major ingredients of this control
are the surface exchanges of energy, moisture, and momentum.

Land surface models have evolved from quite simple treatments of these ex-
changes to increasingly complex descriptions. For earlier reviews, cf. Dickinson
(1983, 1984, 1989, 1992, 1995a, b), Dickinson et al. (1991), Sellers et al. (1997),
Pitman (2003), Yang (2003). Land is most simply treated as a single reservoir for
whatever quantities it is supposed to exchange with the atmosphere. Earliest cli-
mate models also averaged over the diurnal and annual cycles so that climate was
a “steady state” system. The land component of such early models required a state-
ment as to what fraction of the incident solar radiation it would absorb; that is, its
albedo. It also required a specification of heat capacity and water holding capacity
and a rule relating its evaporation to that which would come from a wet surface,
depending on how much water was stored.

Later models have become much more complex. Dai et al. (2003) describes one
example of current models. Such models include descriptions of the global distri-
bution of vegetation and various mechanisms changing with model time-step by
which vegetation returns water to the atmosphere. They may also describe overall
energy and water balances and fluxes from lakes, wetlands, glaciers; river-flows are
determined as an input to ocean dynamics. Rather than describe the details of any
particular such approach, we frame the problem somewhat abstractly. All appropri-
ate approaches to modeling the land surface in a climate model, although they may
look quite different, are implementations of essentially the same ideas.

17.2 What Does the Land Surface of a Climate Model Consist of?

The terrestrial surface in a climate model consists of either soils covered by vegeta-
tion or bare soil. It includes wetlands and lakes and a description of land elevations
at the resolution of the atmospheric model. An initial question might be: what soils
and what vegetation should the model have. This question could be responded to by
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the various descriptive names that observed such vegetation is given: e.g., a given
grid-square in a climate model may be covered by an open forest with an understory
of grass, overlying a soil classified as an “Alfisol”. Such names, alone, are useless
for quantitative physical modeling. However, they may be used through their corre-
lation with needed properties to infer what is needed. One application of terrestrial
remote sensing has been to extrapolate over wider areas names that have been given
to particular kinds of vegetation at the surface. This assignment of a geographic dis-
tribution of land cover is useful for other purposes but may be losing some of the
information needed by climate modelers. If so, this is regrettable since much of the
quantitative information measured by a satellite sensor, especially such as provided
by reflectance imagery, is closely connected to the information directly needed by
climate modelers.

Initial geographic characterization of land cover was provided by Wilson (1984),
Matthews (1984). More recent land cover data sets have come from AVHRR (e.g.,
Strugnell et al., 2001) and now MODIS (Friedl et al., 2002).

17.3 Water and Energy Balance Requirements

Energy exchange at the terrestrial surface is dictated by its net absorption of solar en-
ergy. The solar flux incident at the top of the atmosphere is determined by location,
time of day, and time of year. In passing through the atmosphere, some radiation
is absorbed by atmospheric molecular constituents and some scattered, i.e., Raleigh
scattering by molecules, and Mie scattering by aerosols and cloud droplets. Overall,
on average, about 20% is absorbed and about the same lost by upward scattering.
More than half the incoming solar radiation remains to reach the terrestrial surface.
This radiation incident at the surface is approximately half downward scattered from
the atmosphere (much less on clear days and nearly 100% on cloudy days). It can in
the short term be stored, but on longer time scales must be balanced by net upward
long-wave thermal radiation and turbulent fluxes carrying internal energy from at-
mospheric temperature (sensible fluxes), and the energy stored in evaporated water
(latent fluxes).

Different surfaces act in different ways to achieve a balance between their ab-
sorption of solar radiation and the thermal radiation and turbulent flux exchanges
that collectively provide this balance. Because the net thermal emission and storage
variation (e.g., thermal conduction into soil) are relatively regular, during the day-
time these are commonly lumped for diagnostic purposes with the absorbed solar
radiation to get a net forcing of the sensible and latent fluxes. As by construction,
this net radiation plus storage must balance the turbulent fluxes, the primary issue is
then what determines the relative amount of each. This partitioning between the tur-
bulent flux terms is commonly characterized by the ratio of sensible to latent fluxes,
referred to as “the Bowen ratio”.

According to the above generalities, state variables should be connected to com-
ponents of the system that store water and energy and change in time as this storage
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is modified. Additional “diagnostic” variables are used to relate the state variables
to fluxes. The amount of energy stored in a given material is proportional to its
temperature with this proportionality factor, a heat capacity. Furthermore, sensible
energy exchanges are driven by the differences in temperature between two reser-
voirs and moisture exchange by some difference in moisture potentials. In sum, the
temperatures and moisture of various system elements must be distinguished. Mod-
els address how these elements are heated by the sun and how they lose energy to
each other or to the atmosphere.

The most significant contributors to these elements to be modeled are the vegeta-
tion, surface water in the form of snow or free water (e.g., lakes), and “soil”, where
“soil” refers to mineral or dead organic matter stratified vertically. Vegetation gen-
erally consists of individual surfaces such as leaves or branches with spatial scales
from a few mm to meters. These surfaces have an area in contact with air that is
large compared to the flat area of underlying soil (thus, acting in some ways as a
porous medium, but on a relatively large spatial scale). They respond to solar heat-
ing by increasing their temperatures until their heating is balanced by turbulent and
convective air motions carrying thermal energy and water. Soils and snow are also
porous but their spatial scales are only on a nanometer to micrometer scale so that
water moves through them as a very viscous fluid and thermal energy by conduc-
tion. Soil by volume is about half mineral or organic materials, and the rest some
combination of air and water. Snow consists of crystalline ice with quite a bit of air.

In simple terms, the modeled atmosphere delivers solar radiation and precipita-
tion to the modeled terrestrial surface. How this energy and water is returned to the
atmosphere depends on quite a few modeling details. From the climate viewpoint,
the details of the return fluxes in amount and timing can be important for temper-
atures and precipitation. Precipitation may either be lost at nearly the same time it
falls through evaporation from canopy (referred to as interception loss) or can in-
filtrate the soil and be extracted weeks later as part of the transpiration fluxes (e.g.,
Dickinson et al., 2003). Solar heating of springtime boreal vegetation may either re-
turn directly to the atmosphere or be used to melt the snow pack. The latter is often
invoked as a vegetation feedback on snow melting. More concrete descriptions of
particular processes will be addressed in the following discussion of current issues
that emerge in the context of remote sensing data requirements.

17.4 Role of Solar Radiation in the Climate Model Terrestrial
System

Climate models determine the solar radiation absorbed by the various components of
the terrestrial system to determine separate energy and water balances. For example,
the solar radiation incident at the surface may heat a canopy, its understory, and the
underlying soil. If all these terms are lumped together into a single complex surface,
the solar radiation absorbed is simply the complement of (one minus the) albedo,
which is quantified by remote sensing data products such as from MODIS (e.g., Gao
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et al., 2005). However, surfaces treated in more detail will determine total solar
absorbed as the sum over the absorption by individual terms, and hence observed
albedo becomes a “constraint” rather than a simple boundary condition.

Climate models use leaves, green or brown, and the underlying woody stems to
determine the canopy contribution to absorption of solar radiation. This absorbed
solar radiation raises the vapor pressure of water inside green leaves to higher val-
ues than that of the air outside the leaves and consequently forces the leaves to
transpire. Since the storage of water inside leaves is commonly small, this water
loss must be compensated by extraction of water stored in the soil by plant roots.
The contribution of leaves is quantified in the model in terms of the leaf-area-index
(LAI). This quantity is the one-sided area of leaves (flattened if necessary, to be a
spatial projection) per area of soil surface. MODIS (Myneni et al., 2002) provides
remote sensing estimates of the global distribution of leaves. This term has been de-
termined over periods of 8 days from the beginning of the year 2000 to the present.
It is accompanied by a product FPAR which provides that fraction of the absorbed
visible solar radiation that is taken up by the canopy. The characterization of dead
leaves and stems is more problematic as not yet supported by remote sensing data.

The most common approach to address sub-grid variability in vegetation is to
portion the climate model grid square into various sub-grid tiles. Some fraction of
the grid square must be taken as vegetated, and can be subdivided in terms of plant
functional types (pft’s) (Bonan and Levis, 2002). For example, a savanna might be
covered 80% by grass and 20% by trees, and these are put on separate areas and their
radiative exchange determined by one-dimensional models. The estimated area of
bare surfaces (i.e., whatever is not directly under a tree or grass canopy) is similarly
treated as a separate tile. The area directly under canopies has been treated as bare
soil. Such models assume that trees and grass are in separate clumps; consequently,
if there are trees overlying grass or soil, the light environment is treated very unre-
alistically in terms of the effects of the 3D shading of the grass or soil by the trees.

For open canopies, this treatment can underestimate the visible radiation ab-
sorbed by the canopy by at least a factor of 2. However, many canopies are closed
enough, and reflections from the underlying surface sufficiently compensate, that
much smaller errors are seen in comparing the modeled with observed fraction of
absorbed visible radiation.

Models of transpiration and photosynthesis have a nonlinear dependence on the
intensity of incident light. That is, their dependence on light is linear at low light
levels but asymptotes to some constant value (saturation) at high light levels. Direct
sunlight either strikes a leaf and is greatly attenuated or does not hit any leaves and
continues at the same intensity it started with. Thus, the appropriate statistic for the
effect of direct solar radiation on photosynthesis is not average light intensity but
rather what is the relative area of leaves that receive the direct sun. Diffuse light, on
the other hand is idealized as coming from all sky directions with the same intensity
(cf. Pinty et al., 2005, for a relaxation of this assumption.) and consequently strikes
all leaf surfaces with the average intensity of the diffuse light at a given level in the
canopy. Climate models commonly use an average value of the diffuse radiation,
an assumption which may lead to a factor of 2 overestimation of the average shade
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leaf intensity compared to that from a better scaling (e.g., Dai et al., 2004) and
further serious error if light intensities are too strong to be in the light limited regime
of transpiration/photosynthesis. Such may happen, e.g., for a midday summer sun,
passing through a thin cloud or thick aerosol layer.

Light of average intensity locally attenuates by “Beers Law” either in fractional
area of sunlit leaves (direct sun) or its intensity (diffuse radiation) and thus accord-
ing to

dI
dL

+G · I = S (17.1)

where I is the incident light intensity, L is path length measured in leaf area in-
crement, S is an internal source term, accounting for scattering if needed, and G is
a factor for the projection of leaves into the direction of the light (commonly as-
sumed to be a factor of 0.5 approximating the effect of a uniform distribution of
leaf orientations). For a canopy idealized as a uniform spatial distribution of leaves,
Eq. (17.1) generalizes to a global expression and the path length is the vertical path
length divided by a cosine projection factor. However, leaves, especially those in
forest canopies, are far from uniformly distributed. The most obvious spatial hetero-
geneities that must be addressed are the organization of plant canopies as discrete
objects, organization of leaves into “clusters” and the variety of path lengths (i.e.,
number of leaves) that a light ray must pass by.

Although this issue of canopy heterogeneity has been recognized by climate
modelers for a long time (e.g., Dickinson, 1983), practical approaches to address
it are only now being developed (e.g., Pinty et al., 2006). Ideally, this part of a cli-
mate model should not be computationally much more intensive than the evaluation
of few exponentials (as in analytic two-stream solutions), thus probably precluding
the use of fine layering approaches with multi-scatter iteration or even the direct in-
version of a large matrix as might arise out of various idealizations of the situation.
The physically most realistic and complete description using Monte Carlo is slow
by factors of at least thousands compared to what is needed but can be very useful
for validating approaches of low computational cost (e.g., Pinty et al., 2006).

Where climate model treatments of canopy radiation are weakest, they have also
been most limited by lack of data. These are the situations where sparse canopies
have large openings through which light can directly reach the underlying surface.
Thus, however bad the treatments of radiation by climate models may appear from a
conceptual viewpoint, they have done the required job within the context of the very
little available information. With the archiving of several years of MODIS data, the
time has arrived to evaluate and improve the treatments of radiation used in climate
models.

Jin et al. (2002) reported a very large range of albedos over snow covered
areas depending on the masking by vegetation of the underlying snow surface.
Figure 17.1, from Gao et al. (2005) compares observed albedos (visible light) for
evergreen forest and grassland covers and for varying degrees of snow cover. It illus-
trates the increase of albedo with increasing snow but with a much greater darkening
of the forested region and less sensitivity to snow. It also shows that an extremely
large spatial variability of albedo especially with the largest snow covers (factor of 2
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Fig. 17.1 Shows how albedos vary with snow cover fractions (Gao et al., 2005). Points in the figure
were extracted from global high-quality retrievals during the whole year of 2001 (23 production
periods). Each point in the figure represents a CMG resolution (0.05◦) pixel. Grassland albedos
are seen to be four times as sensitive to snow fractions as that of an evergreen forest

or more). The masking of snow by forests has been included in at least some climate
models since the early 1980s but not with the correct geometric considerations as
discussed above. Furthermore, climate modelers have had little basis for incorporat-
ing in their global models from first principles or surface observation descriptions of
how “open” canopies might be. Prior remote sensing data such as from AVHRR has
been of limited value in developing climate model radiation schemes that adequately
address such details.

Gao et al. (2005) show that the albedos measured by MODIS have the spatial and
temporal patterns appropriate to their underlying land cover classes. The seasonal
variations of these albedos are consistent with the phenology of leaf cover (e.g.,
outside the growing season, deciduous broadleaf forests become much darker in the
near-infrared and a bit brighter in the visible). The albedos over areas of sparser
vegetation also show influences of underlying soil, e.g., grasslands in the band of
10–20 N and presumably mostly in North Africa, show a much higher albedo than
elsewhere.

Tsvetsinskaya et al. (2002) has shown in the context of North Africa how mea-
sured MODIS albedos can be applied to characterize the albedos of an arid region.
They find over this region, considerable spatial variability in its surface albedos,
apparently related to soil mineral composition and geographical characteristics. For
example, MODIS shortwave albedos vary by a factor of about 2.5 from the darkest
volcanic terrains to the brightest sand over the Sahara. Overall, the Sahara desert
has much higher albedos than deserts elsewhere. Climate models have previously
assumed a single albedo for desert.
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17.5 Climate Model Evaluation Studies

Recent studies have begun to evaluate in the context of the new satellite data the
performance of the treatments of radiation in climate models and their various an-
cillary assumptions such as the leaf area used to produce their radiation. Two studies
have evaluated the climate model described by Zeng et al. (2002). This model uti-
lized land surface data developed from AVHRR (e.g., Zeng et al., 2000; Strugnell
et al., 2001) and implemented in the CLM model as described by Dai et al. (2003).
Zhou et al. (2003) found that largest discrepancies between observed and modeled
albedos occur over snow covered regions and in arid regions. They emphasized a
lowering of winter albedos compared to that observed by MODIS, resulting from
an apparent excess of tree and bush stem areas included in the model. Tian et al.
(2004a) compared the LAI assumed in the model with that observed by MODIS and
the contributions of differences between model verus observed LAI to model error.
They also emphasized that whereas the Zeng et al. (2002) climate model may have
overstated the absorption of light by the canopy stems, that this absorption should
still be included but with more appropriate optical properties and that the MODIS
algorithms for LAI and FPAR have left out their effect entirely.

Zhang et al. (2005a) have further demonstrated that a significant fraction of solar
radiation is absorbed by non-photosynthesizing canopy surfaces.

Other studies have evaluated the climate model version described by Bonan et al.
(2002). It differs in its modeling of the land surface from that used by Zeng et al.
(2002) in replacing some aspects of the previous version of CLM (common land
model) with the canopy radiation description developed by Bonan (1996), and with
land data sets developed by Bonan and Levis (2002), also from AVHRR. Although
the AVHRR satellite data used by Zeng et al. (2002) may have been developed more
thoroughly than that of Bonan and Levis (2002), it was expressed in terms of the
IGBP classification and Bonan et al. (2002) required the land data to be formulated
in terms of plant functional type tiles (pft’s) as described in Bonan and Levis (2002).
In after-sight, the treatment of canopy radiation by Zeng et al. (2002) suffered some
numerical flaws (e.g., as mentioned by Pinty et al., 2006), and other inadequacies
so its replacement by the full two-stream computation of Bonan (1996), essentially
the same as used in the Sib model (Dickinson, 1983; Sellers, 1985), was likely an
improvement. To make a long story short, the CLM “took two steps forward and
one step back” as a result of different individual ideas as to what was currently the
best way to do canopy radiation and derive land boundary conditions from AVHRR.

This CLM2 model (community land model version 2) described by Bonan et al.
(2002) was assessed by Oleson et al. (2003), Wang et al. (2004), in the context of
its simulation of albedos. They reported a large negative bias in the albedos over
the Sahara in contrast to the large positive bias reported by Zhou et al. (2003).
This negative bias was a consequence of the Sahara albedo constrained to fit data
from the ERBE instrument, whereas the positive bias was a consequence of data
constrained to reproduce albedos inferred from AVHRR. In sum, prior to MODIS,
previous less reliable satellite estimates of the albedo of the Sahara may have pro-
vided no real information beyond that already available to climate modelers from
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surface and aircraft observations. For the latter, soils, sands, and rock had only been
distinguished by models in terms of their soil hydrological properties and albedo
inferred from an original; “light”, “medium” and “dark” color classification. The
ratio of near-infrared to visible albedo ratio has been fixed at 2 and any dependence
on solar zenith angle neglected. Much more detailed spatial and spectral informa-
tion, especially over semi-arid regions is now available from MODIS. For example,
the ratio of near-infrared to visible albedos observed in MODIS over the deserts
of Sahara, Taklimakan, and Australia varies from 1.6 to 2.7 (Zhou et al., 2003) and
albedo in the Sahara has been shown to increase significantly with solar zenith angle
(Wang et al., 2005). Zhou et al. (2005) has proposed a method using principal com-
ponent analysis to economically represent a high quality soil albedo dataset over
non-vegetated North Africa. An extension of their approach can be used to separate
the MODIS albedos into soil and canopy contributions.

Oleson et al. (2003) (as Zhou et al., 2003) reported that the land surface model,
CLM2, overall reasonably simulated vegetation albedos but that the two-stream
treatment of radiation appeared to have too strong a dependence on solar zenith
angle so that the CLM “black-sky” albedo with sun at local noon was in better agree-
ment with MODIS than the “white sky” diffuse radiation. Wang et al. (2004) further
documented the substantial differences between model and observed dependences
on solar zenith angle. Oleson et al. (2003) also emphasized an overestimate of albe-
dos by the model over snow covered regions in contrast to the emphasis in Zhou
et al. (2003) of an apparent underestimate. Evidently, it is easy for climate models
to make large errors in regions of snow cover and the shading/masking effects of
the vegetation can be either under or over emphasized in different approaches to the
canopy radiation that are too oversimplified and unconstrained by observations to
be expected to give the right answer.

Tian et al. (2004b) illustrate the usefulness of new land surface datasets devel-
oped from MODIS as model boundary conditions. They related LAI, vegetation
continuous field, and the land cover maps to the pft formulation of Bonan and Levis
(2002), using data “collection 4” for the period of September, 2000–August, 2002.
This new dataset showed large differences from the old dataset of Bonan and Levis
(2002). The new LAI was larger than the older version by at least 1.5 over the
Amazon, central Africa, southeastern Asia, and north Europe, and by about 0.5–1.0
over most areas beyond 60◦N in both seasons (Fig. 17.2). These increases in LAI
are likely a result of the AVHRR inversion saturating at a lower LAI than that of
MODIS. The new LAI was also found to be smaller over many regions (Fig. 17.2).
Their use of MODIS data decreased the amount of crops and grass by 20–40% glob-
ally, and increased the “bare” category by a large amount (Fig. 17.3). The previous
version of the data assumed: “that non-tree covered land in forest, savannas, and
grasslands was covered by grasses, in shrub lands by shrubs, in croplands by crops”
(Bonan and Levis, 2002). In semi-arid regions, there was no information (Bonan
and Levis, 2002) as to the fraction of area covered by bushes so leaves were spread
uniformly. This assumption has been found to be incompatible with the existing pa-
rameterization of under canopy energy fluxes and a revised approach for the latter
was implemented (Zeng et al., 2005).
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Fig. 17.2 Spatial pattern of LAI difference between the old and new land surface datasets (new-
old as derived respectively from MODIS and AVHRR LAI products) in winter (DJF) and summer
(JJA) (Tian et al., 2004c)

In the newer MODIS data for fractional tree cover (Hansen et al., 2003) fractional
regions are characterized either as trees or shrubs or “bare”. Apparently, the bare
category in the continuous field data refers to all understory components, but for lack
of further information, Tian et al. (2004b) used literally the “bare” classification.
Presumably, in semi-arid systems, understories are mostly bare soil, but by contrast,
in moist forests they should mostly be dead leaves, mosses, or herbaceous small
plants.

Tian et al. (2004b, 2004c) used CLM2 coupled with the Community Atmospheric
Model (CAM2) to investigate how the modeled surface variables such as temper-
ature and albedo were modified by the new dataset. For snow-free regions, the
increased LAI and changes in the percent cover from grass/crop to tree or shrub
decreased albedo, but also decreased surface air temperatures. Increases of canopy
evapotranspiration and decreases of ground evaporation over tropical regions im-
proved the modeled surface temperature. MODIS albedo data can be used to adjust
model parameters controlling absorption of solar radiation to provide a better fit to
the albedo observations (e.g., Liang et al., 2005).
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Fig. 17.3 Spatial pattern of percent cover difference (new-old) in grass/crop, tree, shrub, and bare
soil at the model spatial resolution as inferred from MODIS land cover classification versus use of
AVHRR (Tian et al., 2004c)

17.6 How can Terrestrial Remote Sensing Best Support Climate
Models?

Observational characterizations of the terrestrial surface may advance climate mod-
els more by providing information that climate models should be using rather than
that required by the current formulation of the climate models. For example, we
have discussed in Section 17.4, that climate models have oversimplified treatments
of the interaction of solar radiation with the terrestrial surface. What observational
information could support a more correct treatment of solar radiation? Observations
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should characterize, to the extent possible, the 3D structure of the surface. A de-
scription of fractional tree cover (e.g., Hansen et al., 2003) is a first step in that
direction. Besides the fraction of tree cover, other tree statistics needed for climate
model details are their size, i.e., height and aspect ratio, and a characterization of
their average distance to nearest neighbors (e.g., Widlowski et al., 2001, 2004). In
addition, a climate model needs all the smaller scale parameters that contribute to the
characterization of surface shading, in particular the relative areas of leaf and stems.

The surfaces beneath a canopy that are affected by the canopy radiatively must
be connected to the description of the canopy. Thus, the fractional areas of other
surfaces besides trees should be established at an appropriate level of detail, in par-
ticular, the fraction that is radiatively connected versus unconnected and the compo-
sition of the underlying surface. The concept of radiative connectivity is somewhat
vague, but it can be quantified by some simple rules: e.g., it might include all un-
derlying surfaces within a horizontal distance 3×H from the canopy, where H is
the crown height. A description of the underlying surfaces so connected can be rel-
atively simple. What are the characteristics of the dominant material shading the
mineral soil, what fraction is photosynthesizing, and what fraction is open to the
underlying soil?

As discussed in the preceding sections, understory has been variously character-
ized as “grass” or “bare”. Either choice of surface may lead to erroneous results in
absorption of radiation when, as now done, its shading by the overlying canopy is
neglected except for surfaces directly under the canopy (which are currently always
taken to be bare soil). Other potentially important under-canopy-cover can be, e.g.,
dead leaves, moss, lichen, or wetland. In general, if fc denotes the fractional cover
of trees, then the sum of all understory components should be 1, not fc as currently
assumed by climate modelers. The difference between surfaces shaded for overhead
sun and those shaded at other times of day is not discontinuous in nature and should
not be so modeled.

17.7 Terrestrial Remote Sensing as a Component of Climate
Prediction

In the climate context, the use of information from terrestrial remote sensing is still
relatively immature. The initial MODIS products involve individual estimates of
parameters at a given pixel and composited over enough scene views to obtain a
variation of view angles. Views are rejected for cloud contamination and quality
flags are set. What is still lacking is utilization of the expected strong space and
time correlation of the data. A pixel with, e.g., a pine forest, will have neighboring
pixels also classified as pine forest and for the next several years at least, they will
mostly remain pine forests. An observation of neighboring pixels can be viewed
as all having the same expected value plus a random noise element. There will be
real differences in their albedo, LAI, etc. The random noise characterizations simply
mean that these differences are too small and irrelevant to be of interest in detail.
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Likewise, pixels should look the same from year to year except for random changes.
Such changes could be as large as those caused by forest fires, which will certainly
be of great interest for some issues, but may not be significant for, e.g., a climate
model’s albedo over a continent.

The state variables computed by a climate model are necessarily continuous in
time and space whereas the pixel by pixel remote sensing products have many data
holes caused by clouds, or more rarely by instrument failures. These holes must
be filled before statistics can be obtained appropriate for use by climate modelers.
Ideally, this filling should be done with no loss of real information. Moody et al.
(2005) reports an approach to such filling for albedos measured by MODIS.

What might be the optimum characterization of, e.g., pine forest albedos in July?
First, what additional parameters besides the month and land cover description do
we expect these albedos to depend on? Probably latitude, and fraction of tree cover
need to be considered. After these correlations are quantified, there may still be sig-
nificant variability that can be ascribed to characteristics of different understories. In
principle, any significant variability can be inverted from its cause, provided the ra-
diative model used is realistic enough to include this source of variability. Whatever
remains is uninterpreted noise. Characterizing the amplitude of this residual noise
is an important aspect of the data analysis.

The state variables of vegetation change in time as a consequence of their
interactions with climate. Various approaches have been developed to model this
dynamical system. Ecosystems change their structure as a response to competi-
tion between different plant functional types (e.g., Lu et al., 2001; Sitch et al.,
2003; Bonan et al., 2003; Woodward and Lomas, 2004; Krinner et al., 2005). These
models have generated their leaves according to prescribed phenologies based on
accumulated “degree days”, apparently by itself not on adequate constraint (e.g.,
Arora and Boer, 2005). The onset of leaves in Northern forests appears to have
as much correlation with mid-summer temperature as degree days (Jenkins et al.,
2002). In semi-arid or tropical systems, the phenology is largely controlled by the
onset of rainy and dry seasons. Their dependences are shown in Fig. 17.4 (Zhang
et al., 2005b). Detailed day by day dynamics of leaf growth can be attempted (e.g.,
Dickinson et al., 1992; 2002), but the underlying principles for this may be inade-
quately understood. Including dynamic growth of roots is another difficult modeling
issue (e.g., Arora and Boer, 2003).

The terrestrial state variable X moves forward in time, formally as a multivariate
differential equation:

dX
dt

+F(X,λ ) = Q(β ) (17.2)

where λ are various fixed parameters, and Q is a forcing term depending on other
parameters β . A satellite measures various reflectance quantities, denoted Yo, which
consists of the “real” Y plus a measurement error term. The model can use its model
value of X = Xm to provide an estimate of Y = Ym. For example, X can be some com-
bination of the model soil moisture, or LAI or fc; the latter two would be changed
by dynamic vegetation versions of the model.
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Fig. 17.4 The phenology of vegetation over Africa as time of greenup from beginning of year
(a, b) and (c, d) its timing relative to the onset (o) and end (e) of the rainy season (Zhang et al.,
2005)

Assume
Ym = g(Xm) (17.3)

The term Ym will differ from Y either because Xm differs from the real X or from
structural error in use of g. We can require that X and Y be adjusted to be as close
as possible to their real values in an rms sense, i.e., find an optimum estimate X̂ as
the minimum value of

J =
∣∣X− X̂

∣∣2 +
∣∣Y−gX̂

∣∣2 . (17.4)
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where all parameters have been normalized by error estimates. If X̂ is close enough
to Xm, Eq. (17.4) can be linearized and solved by matrix computations. In this case,
it reverts to linear least squares fitting, as appropriate for a statistical model with
Gaussian error terms. The standard technologies of data assimilation in atmospheric
models are summarized in Kalnay (2003).

Detailed implementation should make use of known spatial correlations and error
characterizations. Some aspects of this issue have already been addressed by hydrol-
ogists in the context of the fusion of microwave data and soil moisture modeling
(e.g., Entekhabi et al., 2004; Reichle and Koster, 2005). For statistics that change a
lot in time, i.e., depend on X, it has been found useful to do ensemble integrations of
the system Eq. (17.2). A future target for such a data assimilation approach will be
terrestrial carbon (e.g., Hese et al., 2005). Various satellites are under development
to measure the variability of atmospheric CO2 with enough accuracy to infer terres-
trial and oceanic sources and sinks. Such estimation can be substantially improved
with the inclusion of these measurements in atmospheric data assimilation schemes
along with terrestrial and oceanic process modeling.

Assimilation of terrestrial reflectance imaging into models for the time evolution
of canopy structure and LAI will become another major component of this activity.
The implementation of such assimilation will require more advanced algorithmic
approaches to canopy radiation so that the climate model simulations are realistic
enough to reproduce the reflectances seen by remote sensing data.

17.8 Conclusions

Climate models have become increasingly realistic in their descriptions of land
surface processes. They absorb solar radiation and emit long wave radiation
depending on structural details such as arrangement of leaves and soil moisture.
Remote sensing instruments measure the same radiation as reproduced by climate
models. Various aspects of vegetation change in time in response to variations in
climate. Climate models have begun to include such changes in terms of “dynamic
vegetation”. However, the climate models still use much less realistic treatments of
terrestrial radiation than have been achieved by the remote sensing community.

By simplification and improved efficiencies, the treatments of radiation used in
remote sensing can be adopted into climate models. With such, many terrestrial
remote sensing products should be derivable through forward calculations in data as-
similating climate models. The logic, as used today, for atmospheric observations is
that the climate model provides a first estimate, which in principle has incorporated
in it all past observational information. Current observations then provide a correc-
tion to this a priori estimate. The resulting optimal estimate is essentially a weighted
average of two estimates, where the weighting is determined by an understanding
of correlated error statistics. Although assimilating terrestrial data should involve
these general principles, the details of approaches needed will be vastly different
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because of very different time and space scales of the dynamics and observations.
In particular, vegetation is only spatially coupled on climate scales, has very fine
spatial sampling structure, and its temporal sampling by satellite is sparse.
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